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Introduction.

In the conventional approach to teaching first year calculus, limits are considered, whether
explicitly or implicitly, to be absolutely fundamental. But this approach is by no means the
only possible one, let alone the most desirable one.

 In (Awards, 1988), for instance, mention is made of a 1987 MAA Award for Expository
Excellence, the George Polya Award, to Irl. C. Bivens for "What a Tangent Line is When it
isn't a Limit", (Bivins, 1986). The committee's citation is quoted in part as: "By defining the
tangent line as the best linear approximation to the graph of a function near a point, [Bivens]
has narrowed the gap, always treacherous to students, between an intuitive idea and a rigorous
definition. The subject of this article is fundamental to the first two years of college math-
ematics and should simplify things for students...." (Emphasis added).

In fact, the differential study of functions through their best polynomial approximations
is an old idea, going back to (Lagrange, 1797), and it is still basic to Perturbation Theory. It
has also acquired a new life as Theory of Jets in the local theory of differentiable maps.

We will illustrate here how Lagrange's approach applies to the differential calculus of
polynomial functions as, in this case, the approximations are readily obtained. We then shall
briefly indicate how to obtain the polynomial approximations in "all" other cases.

Best Polynomial Approximations.

Consider the polynomial function

f(x) = a0 +a1x + a2x2 + a3x3 + ... + anxn

and suppose that we are interested in f(x) when x is near x0. In other words, we want to ex-
pand f(x) near x0. To local ize  f  at x 0, that is to get a form where the terms are in
descending order of magnitude, we express f(x) in terms of h = x – x0:

f(x0 + h) = a0 +a1(x0 + h) + a2(x0 + h)2 + a3(x0 + h)3 + ... + an(x0 + h)n
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Expanding the binomials and rearranging gives

f(x0 + h) = A0 + A1h + A2h2 + A3h3 + ... + Anhn.

where the Ai depend only on f and x0. In this case then, f(x0 + h), the value of f(x) near x0, is
given exactly by fx0(h), the localization  of f at x0 where fx0(h) = A0 +A1h+A2h2 + ... +
Anxn. Since h is now near 0 and the powers of h in descending orders of magnitude, we can
approximate  the localization to the principal part simply by truncating it to the
appropriate degree. To approximate at infinity, we truncate fÈ(x), the localization at infinity,
which is just f(x) in descending powers.

We can approximate f(x0 + h) with constant functions, the simplest non-zero functions.
If we approximate f(x0 + h) by a constant function CAf(x0 + h) = k, the "error" is f(x0 + h) –
CAf(x0 + h) = [A0 – k] + ... and the order of magnitude of the error is the same as that of the
approximation. But if we take k = A0, then the "error" will be A1h, that is smaller than the
approximation by an order of magnitude. Thus, the Best Constant Approximation of
f(x) near x0 is BCAf(x0 + h) = A0. We shall just write f(x0 + h) = A0 + ... . At this point,
the ellipsis just indicates that A0 is a best approximation.

We have, similarly,  the Best Affine Approximation BAAf(x0 + h) = A0 + A1h +
... and the Best Quadratic Approximation BQAf(x0 + h) = A0 + A1h + A2h2 + ... .

The successive approximations of f(x0 + h) are easily visualized. To obtain a local
graph of fx0(h), first graph the constant function A0, then, using it as "base line", graph the
linear function A1h, then, using the graph of the affine function A0 +A1h as base line, graph
the parabolic function A2h2, then using the graph of the quadratic function A0 +A1h+ A2h2 as
base line graph the cubic function A3h3, etc:
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Qualitative Analysis.

Much of what we do in differential calculus consists in extending information at a point
x0 into information near x0. It is thus natural that we should expand the function near x0. We
first give elementary definitions of the usual features of a function and then necessary and suf-
ficient conditions in terms of the polynomial approximations. Since constant and affine func-
tions are pathological (x0 and x1 are the only "straight" power functions) and therefore usually
not very good approximations, the general idea is to characterize functions by the way they
differ from these approximations.

The zero function has no sign. So, we define signx0 f, the sign  of f near x0, as the way
f(x) differs on each side of x0 from the zero function. For example, sign0 x3 = (–,+). Then, to
find how f(x) differs from the zero function, we need only to approximate f(x0 + h) to its
Least Non-Zero Approximation. Indeed, because the terms of fx0(h) are in descending
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order of magnitude, none of the further terms in fx0(h) can affect the sign as given by the first
non-zero term. A zero is a point where A0 = 0 and its multiplicity corresponds to the first
non-zero Ai. Since, however, the Least Non-Zero Approximation is "usually" the Best Con-
stant Approximation, f(x0 + h) = A0 + ..., most points are "even signed". Since A0 = f(x0),
we get that f(x0 + h) = f(x0) + ... and the

SIGN THEOREM. If f(x) is neither 0 nor È at x0, f(x) is even signed near x0. Moreover,

if f(x) is positive at x0, then signx f = (+,+) and so f(x) is positive near x0,
if f(x) is negative at x0, then signx0  f = (–,–) and so f(x) is negative near x0.

If f(x) is either 0 or È at x0, f(x) near x0 can be even or odd signed. The "unusual" points for
the sign are thus the poles and the zeros of f(x)—whether finite or infinite.

Similarly, a constant function does not vary and we define varx0  f, the variance of f near
x0, as the way f(x) differs on each side of x0 from its best constant approximation. For exam-
ple, var0–x2 = (Ω,œ). Then, to find varx0 f, we need only to approximate f(x0 + h) to its Least
Non-Constant Approximation. Depending on the parity of n  and on the sign of An,
f(x0 + h) = A0 +Anhn + ... shows that x0 is a monotonic point with variance (Ω, Ω) or (œ,œ)
or a turning point with variance (œ,Ω) or (Ω,œ). A critical point is defined as being either
a point where A1 = 0 or a pole. Since the Least Non-Constant Approximation of f(x) is
"usually" its Best Affine Approximation, f(x0 + h) = f(x0) +A1h  + ..., we have that most
points are monotonic. Since, anticipating a bit, A1 = f'(x0), we get that f(x0 + h) = f(x0) +
f'(x0)h + ... and the

VARIANCE THEOREM. If f'(x) is neither 0 nor È at x0, f(x) is monotonic near x0.
Moreover,

if f'(x) is positive at x0, then varx0  f = (Ω, Ω) and so f(x) is increasing near x0,
if f'(x) is negative at x0, then varx0  f = (œ,œ) and so f(x) is decreasing near x0

If f'(x) is either 0 or È at x0, f(x) near x0 can be either monotonic or turning. The "unusual"
points for the variance are thus the critical points of f(x).

While optimization is closely related to variance, we prefer to define extremes indepen-
dantly. So, we define optx0  f, the optimization of f near x0, as the way f(x) compares with
the constant function f(x0) on each side of x0. For instance, we have that both opt0 x1 and
opt0 x3 are equal to (max,min). This notion is also useful at boundary points. To find optx0 f,
we need only to approximate f(x0 + h) to its Least Non-Constant Approximation. Depending
on the parity of n and on the sign of An, f(x0 + h) = f(x0) +Anhn + ... shows that x0 is a
saddle point with optimization (min,max) or (max,min) or an extreme point  with
optimization (min,min) or (max,max). Since the Least Non-Constant Approximation is
"usually" the Best Affine Approximation, most points are saddle points and this explains
why, in the case of differentiable functions, the search for extremes first has to go through a
search for critical points:

OPTIMIZATION THEOREM. If f'(x) is neither 0 nor È at x0, f(x) has a saddle near x0.
Moreover,

if f'(x) is positive at x0, then optx0  f(x) = (max,min),
if f'(x) is negative at x0, then optx0  f(x) = (min,max).
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If f'(x) is either 0 or È at x0, f(x) near x0 can have either a saddle or an extreme. The "unusual"
points for optimization are thus the critical points of f(x).

Finally, we define concx0  f, the concavity of f near x0, as the way f(x) differs from its
Best Affine Approximation on each side of x0. Then, to find concx0 f , we need only to
approximate f(x0 + h) to its Least Non-Affine Approximation of f(x). Depending on
the parity of n and on the sign of An., f(x0 + h) = A0 +A1h+ ... + Anhn + ... shows that x0 is
a curling point with concavity ($%,$%) or (^&,^&) or an  inflection  point with concavity
($%,^&) or (^&,$%). Since the Least Non-Affine Approximation is "usually" the Best Quadratic
Approximation, f(x0 + h) = f(x0) +f'(x0)h+ A2h2 + ... , we have that most points are curling.

Since, anticipating a bit further, A2 = 
f"(x0)

2  , we get that f(x0 + h) = f(x0) +f'(x0)h+ 
f"(x0)

2
h2 + ... and the

CONCAVITY THEOREM. When f"(x) is neither 0 nor È at x0, f(x) has a curling point near
x0. Moreover,

if f"(x) is positive at x0, then concx0  f(x) = ($%,$%) and so f(x) is concave up near x0,
if f"(x) is negative at x0, then concx0  f(x) = (^&,^&) and so f(x) is concave down near x0.

If f"(x) is either 0 or È , f(x) can have either a curling point or an inflection point. The
"unusual" points are thus the "second critical" points of f(x) that is the critical points of f'(x).

Example 1. Let f(x) = x3 –6x2 +9x. Lagrange's approach allows us to investigate the
behaviour of f near any given point.

To look at f(x) near 0, localize at 0, that is just rearrange in ascending powers: f0(x)
= 9x –6x2 +x3. Then, f0(x) = 9x + ... shows that 0 is a zero with sign0 f = (–,+). It
also shows that 0 is a monotonic point with var0 f = (Ω,Ω) and a saddle point with opt0
f = (max,min). Finally, f0(x) = 9x -6x2 + ... shows that 0 is a curling point with conc0

f = (^&,^&).
To look at f(x) near 1, localize at 1: f(1 + h) = (1 + h)3 –6(1 + h)2 +9(1 + h) = 4

–3h2 + h3. Then, f1(h) = 4 + ... shows that f(x) is positive near 1 and f1(h) = 4 –3h2 +
... shows that 1 is critical point, a turning point with var1 f = (Ω,œ), an extreme point
with opt1 f = (max,max) and a curling point with conc1 f = (^&,^&).

To look at f(x) near 3, localize at 3: f(3 + h) = (3 + h)3 –6(3 + h)2 +9(3 + h) = 3h2

+h3. Then, f3(h) = 3h2 + ... shows that 3 is a zero with sign3 f  = (+,+), a turning
point with var3 f = (œ,Ω), an extreme point with opt3 f = (min,min) and a curling point
with conc3 f = ($%,$%).

To look at f(x) near È , localize at È: fÈ(x) = +x3 –6x2 +9x  (it is the "default"
localization). The local graph of fÈ(x) = x3 + ... near È shows that È is a pole with
signÈ f = (+,–), a monotonic point with varÈ  f = (Ω, Ω), a saddle point with optÈ  f =
(max,min) and an inflection point with concÈ f = ($%,^&). (Note that +È is the left side
of infinity and that –È is the right side of infinity.)

Quantitative Analysis.

Just by looking at the principal part of a function, we were able in the previous section to
obtain qualitative information. Here, we don't just ask if f is increasing or concave up near a
point x0 but how much so. We must therefore take into consideration the remainder, that is
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the part that is small compared to the principal part and which we represented by the ellipsis '
... '. Just recognizing the existence of this small part allows us, in contrast with the conven-
tional approach, to fully define all the usual notions. For instance, in the conventional ap-
proach, we define

limx∅x0 f(x) = L iff ∀ε ∃δ [ 0 < |x – x0| < δ ⇒ |f(x) – L| < ε]

but once we decide, as in the usual "intuitive" presentation, to avoid ε's and δ's, we are left
with

limx∅x0 f(x) = L iff

that is without even the appearance of a definition and with nothing to foster and support any
intuition of the meaning of limx∅x0 f(x). Since the "intuitive" idea of closeness provides the
students with no working definition, in particular with no way to find limits, it seems hardly
worth the usual effort.

By contrast, in Lagrange's approach, we have

limx∅x0 f(x) = L iff f(x0 + h) = L + ...

which we interpret as saying that, when x is near x0, f(x0 + h) is equal to L plus "something
small" and this is a working definition as it allows us to find limits. In fact, we can find sided
limits just as easily by looking at the graph of the Least Non-Constant Approximation f(x0 +
h) = L +Anhn + ... instead of just that of the Best Constant Approximation f(x0 + h) = L +...

Continuity is then defined as

f is continuous at x0 iff f(x0 + h) = f(x0) + ...

which we read as: f is continuous at x0 iff f near x0 is approximately equal to f at x0. So, A
CONTINUOUS FUNCTION IS A FUNCTION THAT, LOCALLY, IS APPROXIMATELY CONSTANT
which again is a working definition. Indeed, f has a noticeable jump at x0 if and only if f(x0 +
h) is noticeably different from f(x0) on at least one side of x0.

Similarly, and exactly in the way differentiability is defined in higher dimensions, see for
instance (Williamson, Crowell, & Trotter, 1968), we have

f is differentiable at x0 iff f(x0 + h) = f(x0) + lh + ... for some l

which we read as: f is differentiable at x0 iff f near x0 is approximately equal to f at x0 plus a
term of the order of |x – x0|. So, A DIFFERENTIABLE FUNCTION IS A FUNCTION THAT,
LOCALLY, IS APPROXIMATELY AFFINE.

Example 2. Let f(x) = x3 –6x2 +9x. To obtain the equation of the tangent to the
graph of f near 2, localize to obtain f(2+h) = f2(h) = (2 + h)3 – 6(2 + h)2 + 9(2 + h) =
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[8 + 12h  + ... ] – 6[4 + 4h  + ... ]+ 9(2 + h) = 2 – 3h + ... so that the best affine
approximation of f2(h) is BAAf2(h) = 2 – 3h. We get the global equation of the tan-
gent by "delocalizing" BAAf2(h): t2(x) = BAAf2(x–2) = 2 – 3(x – 2) = –3x +8.

We call linear rate of change the coefficient A1 of the linear term. We then define the
derivative of a function f as the function f' whose value at x0 is the linear rate of change of
f at x0: f'(x0) = A1. This makes it quite simple to obtain the derivative of a function "from
first definition".

Example 3. To obtain the derivative of xn, localize f(x) = xn at x0. By the binomial
expansion theorem,

f(x0 + h) = (x0 + h)n = x0
n + nÙx0

n– 1Ùh + ... ,

so that the linear rate of change is nÙx0
n– 1 which gives f'(x) = nÙxn– 1.

At first glance, though, it seems that there is a loss of intuition in using the linear rate of
change A1 and that, from a physical point of view, what is really intuitive is the instant rate
of change limx∅x0 ∆y/∆x. In the case of an affine function however there is no difficulty since
the average rate of change between any two points x1 and x2 is independent of x1 and x2 and is
equal to A1. So, in this case, by any definition of limx∅x0

, the instant rate of change is equal
to the linear rate. But then, in the general case, we just say that the instant rate of change of a
function must be the same as that of its best affine approximation which is A1:

limx∅x0 
∆x
∆y  = limh∅0 

fx 0
(h ) – fx 0

(0)

 h  

= limh∅0 
A0 +  A 1h  +  A 2h2 +  A 3h3 +. . .  –  A 0

 h  

= limh∅0 
A1h  +  A 2h2 +  A 3h3 +   . . .  

 h  

= limh∅0 {A1 + A2h + A3h2 + ... }

= A1

The usual rules are also quite easily proven by looking at the linear rate of change in the ex-
pansion of the appropriate function.

Example 4. To get the quotient rule, expand 


f

g (x0 + h)  by dividing in ascending

powers:
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


f

g (x0 + h )  = 
f(x0 +  h )
g(x0 +  h )   = 

f(x0)  +  f'(x0)h  +   . . .
g(x0)  +  g'(x0)h  +   . . .  = 

f(x0)
g(x0)  +

f'(x0)g(x0) - f(x0)g'(x0)
[g(x0)]2   h + ...

Example 5. To get the chain rule, expand [gof](x0 + h) = g(f(x0 + h)).
By the differentiability of f at x0:

g(f(x0 + h)) = g(f(x0) + f'(x0)h + ... )
= g(f(x0) +k ) where k = f'(x0)h + ...

and by the differentiability of g at f(x0)
= g(f(x0)) + g'(f(x0)) k + ...
= g(f(x0)) + g'(f(x0)) [f'(x0)h + ...] + ...
= g(f(x0)) + g'(f(x0))f'(x0)h + ...

The nth derivative can be defined inductively as usual but also directly from the coefficient
of hn in f(x0 + h).

Example 6. Inductively, the second derivative of f(x) = xn is the derivative of f'(x) =
nÙxn– 1. Localize at x0. By the binomial expansion theorem,

f'(x0 + h) = nÙ(x0 + h)n– 1 = nÙ[x0
n– 1 + (n–1)Ùx0

n– 2Ùh + ... ]
= nÙx0

n– 1 + nÙ(n–1)Ùx0
n– 2Ùh + ...

and the linear rate of change of f '  is nÙ(n–1)Ùx0
n– 2.  Note that this is twice the

coefficient of h2 in f(x0 + h) which is the quadratic rate of change of f.

Altogether then, polynomial approximations are just Taylor expansions:

f(x0 +h) = f(x0) + f'(x0)h + f"(x0)h2/2 + f(3)(x0)h3/3 + ... + f(n)(x0)hn/n! + ...

Note that even in the general case, we are not dealing with a series, that is with the limit of an
infinite sum, as this would involve taking the limit of the remainder R n(h) as n approaches È.

For a treatment of calculus based on power series, see (Levi, 1968).
But since "all" functions encountered in first year calculus are Cn, this implies that they

should, a priori, be approximable by polynomial functions. And, indeed, nothing in the
preceding depended on f being a polynomial function other than the way in which we obtained
the approximations.

Approximation of NonPolynomial Functions.

We now indicate how to get the polynomial approximation of "all" other functions. In
the case of rational functions, we obtain the approximations by division of polynomials in
ascending powers near 0 and descending powers near È. Observe that we can also approximate
rational functions near their poles; the only difference is that the approximation will be a
Laurent-polynomial. See (Schremmer, & Schremmer, In preparation a) and Example 8 below.
For "all" other functions, we obtain the approximations by the method of undetermined
coefficients from the functional equation, algebraic or differential, of which they are the
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solution. See (Schremmer, & Schremmer, In preparation b). In fact, even the rigorous
treatment is much simpler that way than the conventional one. See for instance Sections 4-1,
2, and 3 in (Lang, 1976) or Section 4-8 and exercise 3 in (Finney, & Ostbey, 1984).

It is interesting however to check that the polynomial approximations already have many
of the properties of the exact solution. Also, note that there is no need for L'Hôpital's rule.

Example 7. Consider the following complete list of examples of applications of
L'Hôpital's rule taken from a popular textbook.

1. l i mx∅0 sinx /x 2. l i mx∅π/2 [1–sinx]/cosx 3. l i mx∅0 [ex  – 1]/x3

4. l i mx∅0 [1 – cosx]/x2 5. l i mx∅0 ex/x2 6. l i mx∅+È x-4/3/sin(1/x)
7. l i mx∅0 tanx/x2

With the exception of 2. and 6., the limits are obvious as soon as we replace the func-
tions by their polynomial approximations. For 2. we first localize at π/2 and for 6. we
first set h = 1/x.

Applications.

Among the main mathematical applications of the differential calculus are optimization
and graphing. Extremes are found by analyzing critical points but here we can do this in sev-
eral ways. As at any point, we can expand the function f itself. Or we can expand the deriva-
tive of f near x0 and recover from its sign near x0 the information about the variance of f near
x0. Or we can look at the second derivative whose sign at x0 gives the concavity near x0 and,
if f" is 0 at x0, we can expand f" to get its sign near x0 and therefore the concavity of f near
x0.

To graph a rational function, we just approximate f near its essential  points, that is
near È and the poles.

Example 8. Consider the function f(x) = x–2
x2–1  whose poles are –1 and +1.

fÈ(x) = x  +   . . .
x2 +   . . .  = 1x  + ... by division in descending powers.

f(–1 + h) = -3  +   . . .
-2h  +   . . .  = 3

2h  +... by division in ascending powers.

f(+1 + h) = -1  +   . . .
2h  +   . . .  = -1

2h  +... by division in ascending powers.

We then sketch the local graphs and interpolate smoothly:

0

f
+ 1f– 1ff

È

–1 +1 –1 +1
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fÈ(x) = 1
x     + ... f– 1(h) = 3

2h  + ... f+1(h) = – 1
2h  + ... Essential graph

Thus f must have a minimum somewhere between –1 and +1, a zero somewhere right
of +1, a maximum somewhere right of the zero and an inflection somewhere right of
the maximum.

Fundamental Theorem.

We consider the following initial value problem in terms of finite differences: given a
function f(x), find the value at x1 of a function F(x) such that F'(x) = f(x) given F(x0).

In comparing small quantities, it is convenient to introduce Landau's "little oh" notation.
Given two functions f and g with g(0) ≠ 0, if limh∅0 f(h)/g(h) = 0, that is if, as h approaches
0, f(h) approaches 0 faster than g(h), we shall say that f(h) = o[g(h)] near 0.

If we then assume the existence of an antiderivative F(x), we have immediately from our
definition of differentiability:

F(x0 + h) – F(x0) = F'(x0)h + ho1[1]
= f(x0)h + ho1[1]

Then, taking h = 
x1 –  x 0

n   , we continue step by step until we reach x1 = x0 + nh:

F(x0 + 2h) – F(x0 + h) =  hf(x0 + h) + ho2[1]
F(x0 + 3h) – F(x0 + 2h) =  hf(x0 + 2h) + ho3[1]

................................................................................................................
..............

F(x0 + nh) – F(x0 + (n – 1)h)) =  hf(x0 + (n – 1)h) + hon[1]

Adding and cancelling on the left, we get:

F(x)|
x1
x0  = F(x1 ) – F(x0) =  h ∑

0

n– 1

 f(x 0 + ih)  + h∑
1

n

o i[1] 

This is always true but since we have no information on the various remainders hÙoi[1], we

have no way to evaluate the term ∑
1

n

o i[1] . So, we have a good reason to let n approach È.

Clearly, for f(x) smooth enough, h ∑
1

n

o i[1]  approaches 0 as n approaches È and thus we ob-

tain

 F(x)|
x1
x0  =  lim n∅È ∑

0

n– 1

 f(x 0 + ih)  = lim n∅È ∑
0

n– 1

 f(x i)  ,

where the Riemann sum ∑
0

n– 1

 f(x i)  can then be easily interpreted geometrically as the approxi-

mation of ⌡⌠
x0

  x 1

f(x) dx , the area under the graph of f. We thus have, (Picard, 1901):



1
0

 ⌡⌠
x1

  x 0

f(x) dx = F(x)|
x1
x0  + ...

Note.  Some of the pedagogical advantages of Lagrange's viewpoint are discussed in
(Schremmer, & Schremmer, 1989). For some aspects pertaining to "calculus literacy", see
(Schremmer, & Schremmer, 1988). Finally, (Mattei, & Schremmer, 1988) is a "task" imple-
mentation of Lagrange's approach. Interested readers are invited to write for (p)reprints.
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